AI人工智能的迅猛发展得以于计算机深度学习技术的快速发展,而说到深度学习技术它又必然离不开底层基础的数据标注。
而在今天对于这种深度学习技术的基础数据标注工作也有相当一大部分人群不知道它到底是怎么个回事?什么是数据标注?数据标注是做什么的?这种问题就连一些从事这方面工作的人也有说不明白的。
要说起数据标注那我们也就不得不说下从事数据标注工作的数据标注员这个群体。人工智能、深度学习”这种名词看似高深莫测非常高大上,但目前提供给机器深度学习的数据标注采集等工作,仍是基于密集劳动力的人工智能数据标注产业。数据标注员和工厂流水线上的操作员也是没有多大区别的,可能有很多人觉得不可思议,但是目前这种情况 确实是事实。
那到底什么是数据标注呢?
要理解数据标注我们先来举个简单的例子:小时候大人教我们认识花朵时会指着花草给我们说 花会好多颜色,具体什么花开什么颜色,那我们就会慢慢记住什么花开什颜色。而人工智能深度学习也是和我们人类认知事物是一个道理。
人工智能深度机器学习的前提也是数据标注员根据不同的图片、语音、文本等数据标识出各种功能标签然后机器学习根据不同标签来认识出不同的事物。
数据标注是通过数据标注人员借助计算机标注工具软件对人工智能学习数据进行加工的一种行为。通常数据标注的类型包括:图像标注、语音标注、文本标注、视频标注等种类。标记的基本形式有标注画框、3D画框、文本转录、图像打点、目标物体轮廓线等。
常见的几种数据标注类型
1.分类标注:
分类标注,就是我们常见的打标签。一般是从既定的标签中选择数据对应的标签,是封闭集合。如下图,一张图就可以有很多分类/标签:成人、女、黄种人、长发等。对于文字,可以标注主语、谓语、宾语,名词动词等。
适用:文本、图像、语音、视频
应用:脸龄识别,情绪识别,性别识别
2.标框标注:
机器视觉中的标框标注,很容易理解,就是框选要检测的对象。如人脸识别,首先要先把人脸的位置确定下来。行人识别,如下图。
适用:图像
应用:人脸识别,物品识别
3.区域标注:
相比于标框标注,区域标注要求更加精确。边缘可以是柔性的。如自动驾驶中的道路识别。
适用:图像
应用:自动驾驶
4.描点标注:
一些对于特征要求细致的应用中常常需要描点标注。人脸识别、骨骼识别等。
适用:图像
应用:人脸识别、骨骼识别
5.其他标注:
标注的类型除了上面几种常见,还有很多个性化的。根据不同的需求则需要不同的标注。如自动摘要,就需要标注文章的主要观点,这时候的标注严格上就不属于上面的任何一种了。(或则你把它归为分类也是可以的,只是标注主要观点就没有这么客观的标准,如果是标注苹果估计大多数人标注的结果都差不多。)
数据标注员可以说是AI消灭了一部分工作又创造出来的一种工作。在未来AI发展良好的前提下,数据的缺口一定是巨大的。可以预见3-5年内数据标注员的需求会一直存在。
至于发展,其实所谓一些熟能生巧的工作,都是有被替代掉的风险的。深度学习解决的一件事情就是熟能生巧。在这个岗位上,其实你的一些想法就代表了AI的想法,AI会根据你标注的数据进行学习,想想还是有点成就感的。
数据标注可以说是AI的入门级岗位,未来可转向其他AI岗位。如项目实施顾问等,这就要求更多的工作技能,需要再工作中积累。