本教程操作环境:windows7系统、Dell G3电脑。
我国学者研究“多节点量子网络”取得基础性突破
中科院院士、中国科学技术大学教授潘建伟、教授包小辉等人研究量子网络取得重要进展,成功地利用多光子干涉将分离的3个冷原子量子存储器纠缠起来,为构建多节点、远距离的量子网络奠定了基础。国际权威学术期刊《自然·光子学》日前发表了该成果,审稿人认为这是“多节点量子网络研究的里程碑”。
与现有的电子计算机网络相对应,量子网络指的是远程量子处理器间的互联互通,按发展程度可分为量子密钥网络、量子存储网络、量子计算网络三个阶段。
由于量子网络的重要应用价值,国际科技竞争非常激烈。目前量子密钥网络已较为成熟,正在进入规模化应用,如我国已经建成的量子保密通信“京沪干线”。在下一阶段的量子存储网络方面,当前的主要科研目标是拓展节点数目、增加节点间距离。
构建量子存储网络的基本资源是光与原子间的量子纠缠,纠缠的亮度及品质决定了量子网络的尺度与规模。
以高亮度光与原子纠缠为基础,研究人员通过制备多对纠缠,用3光子干涉成功地将3个原子系综量子存储器纠缠起来。
实验中的3个量子存储器位于两间独立的实验室里,二者之间由18米的单模光纤相连。研究人员介绍,结合相关新型存储和纠缠技术,他们未来有望进一步增加节点数目;采用量子频率转换技术将原子波长转换至通信波段,也有望大幅扩展节点间的距离。
扩展资料:
量子纠缠量子理论研究者很早就发现了开启量子通讯的钥匙——量子纠缠。量子纠缠描述了这样一个现象:两个微观粒子位于宇宙空间中的两边,无论相隔多远,只要这两个粒子彼此处于量子纠缠,则通过改变一个粒子的量子状态,就可以使非常遥远的另一个粒子状态也发生改变,信号超越了时空的阻隔,直接送达了另一个粒子那里。
这种神奇的现象和我们生活中所说的“心灵感应”很类似,两个相距遥远的人不约而同地想去做同一件事,好像有一根无形的线绳牵着两个人。
这种理论上的超过通讯方式激起了量子科学家们的雄心壮志,他们试图建立起比现在的互联网快千万倍的量子网络。